Poisson Distribution

How to recognize:

- 1. n is large
- 2. p is small and remains the same
- 3. Usually the events occur over an interval like time, area, or volume.
- i.e. Errors per second in data transmission, plants per acre, fecal coliforms per gallon.

The formula for the Poisson Distribution

The probability of X occurrences in an interval, where λ is the mean number of occurrences per unit, is:

$$P(X;\lambda) = \frac{e^{-\lambda}\lambda^{X}}{X!}$$

Round your answers to four decimal places!

e.g.1

If there are 200 typographical errors randomly distributes in a 500-page manuscript, find the probability that a given page contains exactly three errors.

Because there are 200 errors per 500 pages

$$\lambda = 200 / 500 = 0.4$$
 and $X = 3$

$$P(3;0.4) = \frac{e^{-0.4}(0.4)^3}{3!}$$

$$P(3;0.4) = 0.0072$$

e.g.2
A video tape has an average of one defect every 1000 feet. Find the probability of 5 defects in 3000 feet.

e.g.2

A video tape has an average of one defect every 1000 feet. Find the probability of 5 defects in 3000 feet.

$$\lambda = 0.001*3000 = 3$$

$$X = 5$$

$$P(5;3) = \frac{e^{-3}(3)^5}{5!}$$

$$P(5;3) = 0.1008$$

e.g.3

A telephone tech-support call center gets about 3 calls per hour on its 800 number. For a randomly selected hour find these probabilities.

- 1. The call center will receive zero calls.
- 2. It will receive 1 call.
- 3. It will receive 2 calls.
- 4. It will receive 3 or more calls calls.

e.g.3 Answer for 1.

A telephone tech-support call center gets about 3 calls per hour on its 800 number. For a randomly selected hour find these probabilities.

1. The call center will receive zero calls.

$$P(0;3) = \frac{e^{-3}(3)^0}{0!} = 0.0498$$

e.g.3 Answer for 2.

A telephone tech-support call center gets about 3 calls per hour on its 800 number. For a randomly selected hour find these probabilities.

2. It will receive 1 call.

$$P(1;3) = \frac{e^{-3}(3)^1}{1!} = 0.1493$$

e.g.3 Answer for 3.

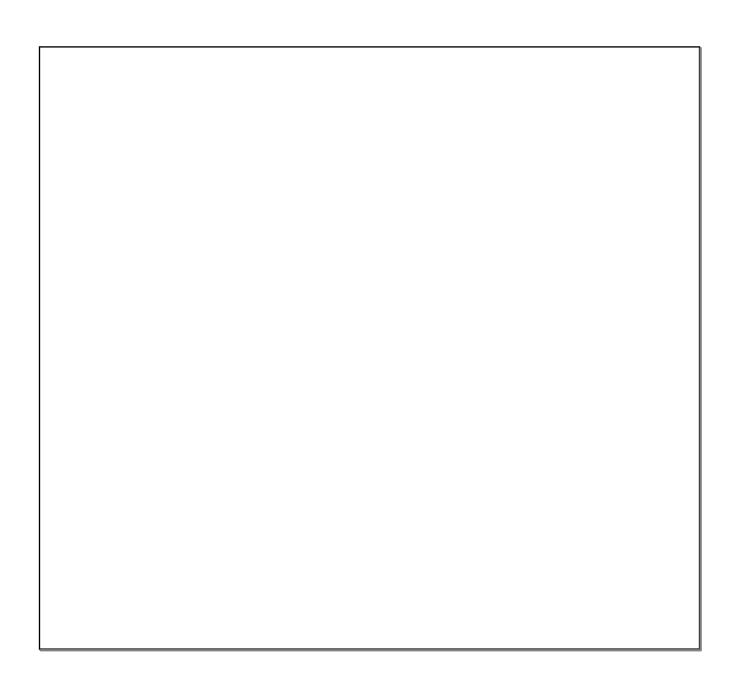
A telephone tech-support call center gets about 3 calls per hour on its 800 number. For a randomly selected hour find these probabilities.

3. It will receive 2 calls.

$$P(2;3) = \frac{e^{-3}(3)^2}{2!} = 0.2240$$

e.g.3 Answer 4.

A telephone tech-support call center gets about 3 calls per hour on its 800 number. For a randomly selected hour find these probabilities.


4. It will receive 3 or more calls.

Probability of 3 or more = 1 - probability of at most two.

Probability of at most 2 = P(0;3) + P(1;3) + P(2;3)

= 0.0498 + 0.1493 + 0.2240 = 0.4231

Prob of 3 or more = 1 - 0.4231 = 0.5769

