Chapter 7

7.1.1:

- 7-6. a. They are congruent by $ASA \cong$ or $AAS \cong$ b: $AC \approx 9.4$ units and DF = 20 units
- 7-7. Relationships used will vary, but may include alternate interior angles, Triangle Angle Sum Theorem, etc.; $a = 26^{\circ}$, $b = 65^{\circ}$, $c = 26^{\circ}$, $d = 117^{\circ}$
- **7-8.** width = 60 mm, area = 660 mm^2
- 7-9. a quadrilateral
- **7-10.** a: (6,-13) b: not possible, these curves do not intersect

7.1.2:

- 7-14. Using the Pythagorean Theorem, AB = 8 and JH = 5. Then, since $\frac{3}{6} = \frac{4}{8} = \frac{5}{10}$, $\triangle ABC \sim \triangle HGJ$ because of SSS ~.
- 7-15. 7 units
- **7-16.** a: 3m = 5m 28, $m = 14^{\circ}$ c: 2(n+4) = 3n-1, n = 9 un b: $3x + 38^{\circ} + 7x - 8^{\circ} = 180^{\circ}$, $x = 15^{\circ}$ d: 2(3x + 12) = 11x - 1, x = 5 un
- **7-17.** Rotating about the midpoint of a base forms a hexagon (one convex and one non-convex). Rotating the trapezoid about the midpoint of either of the non-base sides forms a parallelogram.
- **7-18.** a: 10 units b: (-1,4)c: 5 units, it must be half of *AB* because *C* is the midpoint of \overline{AB} .

7.1.3:

- 7-26. a: The 90° angle is reflected so $m \measuredangle XZY' = 90^\circ$. Then $m \measuredangle YZY' = 180^\circ$.
 - **b:** They must be congruent because rigid transformations (such as reflection) do not alter shape or size of an object.
 - c: $\overline{XY} \cong \overline{XY'}$, $\overline{XZ} \cong \overline{XZ}$, $\overline{YZ} \cong \overline{YZ}$, $\measuredangle Y \cong \measuredangle Y'$, $\measuredangle YXZ \cong \measuredangle Y'XZ$ and $\measuredangle YZX \cong \measuredangle Y'ZX$
- 7-27. M(0,7); A variety of methods are possible
- **7-28.** a: The triangles are similar because corresponding sides are proportional (SSS ~).
 - **b:** The triangles are similar because parallel lines assure that corresponding angles have equal measure (AA ~).
 - **c:** Not enough information is provided.
 - d: The triangles are congruent by AAS or ASA .
- 7-29. a: It is a parallelogram; opposite sides are parallel.b: 63.4°; They are equal.
 - **c:** \overline{AC} : $y = \frac{1}{2}x + \frac{1}{2}$, \overline{BD} : y = -x + 5 : No **d:** (3,2)
- **7-30.** a: No solution; lines are parallel.b: (0,3) and (4,11)
- 7-31. Side length = $\sqrt{50}$ units, diagonal is $\sqrt{50} \cdot \sqrt{2} = \sqrt{100} = 10$ units
- **7-32.** a: It is a rhombus. It has four sides of length 5 units.
 - **b:** \overline{HJ} : y = -2x + 8 and \overline{GI} : $\frac{1}{2}x + 3$
 - **c:** They are perpendicular.
 - **d:** (6,-1)
 - e: 20 square units
- 7-33. a: 6n 3° = n + 17°, n = 4°
 b: 7x 19° + 3x + 14° = 180° so x = 18.5°. Then 5y 2° = 7(18.5) 19°, so y = 22.5°.
 c: 5w + 36° + 3w = 180°, w = 18°
 d: k² = 15² + 25² 2(15)(25) cos 120°, k = 35
- **7-34.** ≈ 35.24 units
- **7-35.** a: $\frac{1}{8}$ b: $\frac{5}{6}$

7.1.4:

- **7-39.** $360^\circ \div 36^\circ = 10$ sides **b:** regular decagon
- 7-40. If the diagonals intersect at *E*, then BE = 12 mm, since the diagonals are perpendicular bisectors. Then $\triangle ABE$ is a right triangle and $AE = \sqrt{15^2 12^2} = 9$ mm. Thus, AC = 18 mm.
- **7-41.** Yes, she is correct. One way: Show that the lengths on both sides of the midpoint are equal and that (2, 4) lies on the line that connects (-3, 5) and (7, 3).
- **7-42.** (a) and (c) are correct because if the triangles are congruent, then corresponding parts are congruent. Since alternate interior angles are congruent, then $AB \parallel DE$.
- 7-43. $AB = \sqrt{40} \approx 6.32$, $BC = \sqrt{34} \approx 5.83$, therefore C is closer to B.

7.2.1:

7-49.	a:	$x = 8.5^{\circ}$	b: $x = 11$	c:	$x = 14^{\circ}$
7-50.	a:	$360^\circ \div 72^\circ = 5$ sides	b : $360^{\circ} \div 9 = 40^{\circ}$		

- **7-51.** \approx 36.4 feet from the point on the street closest to the Art Museum
- **7-52.** a: $x + x + 82^{\circ} = 180^{\circ}, x = 49^{\circ}$ b: $2(71^{\circ}) + x = 180^{\circ}, x = 38^{\circ}$
- **7-53.** a: similar (SSS ~) b: congruent (ASA \cong or AAS \cong)
 - c: congruent, because if the Pythagorean Theorem is used to solve for each unknown side, then 3 pairs of corresponding sides are congruent; thus, the triangles are congruent by SSS \cong
 - **d:** similar (AA ~) but not congruent since the two sides of length 12 are not corresponding

7.2.2:

- **7-58.** 4x 1 = x + 8, x = 3; 5y + 2 = 22, y = 4
- **7-59.** a: 83° b: 92°
- 7-60. a: It is a parallelogram, because MN || PQ and NP || MQ
 b: (1,-5)

7-61.

7.2.3:

7-66.	a:	congruent (SSS \cong)	b: not enough information	
	c:	congruent (ASA \cong)	d: congruent (HL \cong)	
7-67.	a: b: c:	It is possible. Same-side interior angles should One pair of alternate interior ang pair of lines cut by a transversal;	add up to 180°. les are equal, but the other is not for the same or, the vertical angles are not equal.	
7-68.	a: c:	Yes, HL \cong tan 18° = $\frac{4}{AD}$, AD \approx 12.3 units	 b: 18°, 4 d: ≈ 49.2 square units 	
7-69.	a: b:	Parallelogram because the opposite sides are parallel. \overrightarrow{AC} : $y = \frac{3}{4}x$; \overrightarrow{BD} : $y = -\frac{3}{2}x + 9$		
7-70.	a: c:	$\frac{2x + 52^{\circ} = 180^{\circ}, 64^{\circ}}{\frac{\sin 77^{\circ}}{x} = \frac{\sin 72^{\circ}}{8}, x \approx 8.2$	b: $4x - 3^\circ + 3x + 1^\circ = 180^\circ$, 26° d: $5x + 6^\circ = 2x + 21^\circ$, $x = 5^\circ$	

7.2.4:

- **7-72.** $36\sqrt{3} \approx 62.4$ square units
- **7-73.** No; using the Pythagorean Theorem and the Law of Cosines, the perimeter of the triangle is ≈ 26.3 feet.
- 7-74. a: congruent (SAS \cong) and x = 2 b: congruent (HL \cong) and x = 32
- **7-75.** A = 24 square units
- **7-76.** ≈ 103.8 meters

7.2.5:

- **7-83. b:** Since corresponding parts of congruent triangles are congruent, 2y + 7 = 21 and y = 7.
- **7-84.** $m \measuredangle a = 132^{\circ}, m \measuredangle b = 108^{\circ}, m \measuredangle c = 120^{\circ}, m \measuredangle a + m \measuredangle b + m \measuredangle c = 360^{\circ}$
- **7-85.** $\overline{AB} \cong \overline{CD}$ and $\overline{AB} \parallel \overline{CD}$ (given), so $\measuredangle BAC \cong \measuredangle DCA$ (alt. int. angles). $\overline{AC} \cong \overline{CA}$ (Reflexive Property) so $\triangle ABC \cong \triangle CDA$ (SAS \cong). $\measuredangle BCA \cong \measuredangle DAC$ ($\cong \triangle s \rightarrow \cong$ parts). Thus, $\overline{BC} \parallel \overline{AD} BC \parallel AD$ (if alt. int. angles are congruent, then the lines cut by the transversal are congruent).
- **7-86.** A = 42 square units, $P \approx 30.5$ units
- 7-87. a: ΔADC; AAS ≅ or ASA ≅
 b: ΔSQR; HL ≅
 c: no solution, only angles are congruent
 d: ΔTZY; SAS ≅ and vertical angles
 e: ΔGFE; alternate interior angles equal and ASA ≅
 f: ΔDEF, SSS ≅

7.2.6:

7-94. a: The triangles should be \cong by SSS \cong but $80^\circ \neq 50^\circ$.

- **b:** The triangles should be \cong by SAS \cong but $80^\circ \neq 90^\circ$ and $40^\circ \neq 50^\circ$.
- c: The triangles should be \cong by SAS \cong but $10 \neq 12$.
- d: Triangle is isosceles but the base angles are not equal.
- e: The large triangle is isosceles but base angles are not equal.
- f: The triangles should be \cong by SAS \cong but sides $13 \neq 14$.

7-95.	a: 12	b: 15	c: 15.5

7-96.

Statements	Reasons	A TB CT D
1. $\overline{AD} \parallel \overline{EH}$ and $\overline{BF} \parallel \overline{CG}$	[Given]	$\frac{a}{a}$
2. <i>a</i> = <i>b</i>	[If lines are parallel, alternate interior angle measures are equal.]	$\underbrace{b/c}_{E/F} \xrightarrow{c/d}_{G/d} \xrightarrow{c}_{H}$
3. <i>b</i> = <i>c</i>	[If lines are parallel, corresponding angle measures are equal.]	
4. $a = c$	[Substitution]	
5. <i>c</i> = <i>d</i>	[Vertical angle measures are equal.]	
6. $a = d$	[Substitution]	

7-97. This problem is similar to the Interior Design problem (7-19). Her sink should be located $3\frac{2}{3}$ feet from the right front edge of the counter. This will make the perimeter ≈ 25.6 feet, which will meet industry standards.

7.3.1:

7-102. a: (4.5,3) **b:** (-3,1.5) **c:** (1.5,-2)

7-103. a: $\triangle SHR \sim \triangle SAK$ by AA~ c: 6 units b: 2HR = AK, 2SH = SA, SH = HA

- 7-104. a: $\triangle CED$; vertical angles are equal, $ASA \cong$ b: $\triangle EFG$; $SAS \cong$ c: $\triangle HJK$; HI + IJ = LK + KJ, $\measuredangle J \cong \measuredangle J$; $SAS \cong$
 - d: not \cong , all corresponding pairs of angles equal is not sufficient
- **7-105.** No, her conclusion in Statement #3 depends on Statement #4, and thus must follow it.
- 7-106. a: must be a quadrilateral with all four sides of equal lengthb: must be a quadrilateral with two pairs of opposite sides that are parallel

7.3.2:

- 7-112. Multiple answers are possible. Any order is valid as long as Statement #1 is first, Statement #6 is last, and Statement #4 follows both Statements #2 and #3. Statements #2, #3, and #5 are independent of each other and can be in any order as long as #2 and #3 follow Statement #1.
- **7-113. a:** 6 **b:** 3 **c:** -6.5
- 7-114. a: yes, by SAS~ b: ∠FGH ≅ ∠FIJ, ∠FHG ≅ FJI
 c: Yes, because corresponding angles are congruent and because of the Triangle Midsegment Theorem.
 d: 2(4x-3) = 3x + 14, so x = 4 and GH = 4(4) 3 = 13 units
- 7-115. a: a right triangle. Some students may also call it a slope triangle.
 b: B' is at (2,7). ABCB' is a kite.
- **7-116. a:** Must be: trapezoid. Could be: isosceles trapezoid, parallelogram, rhombus, rectangle, and square.
 - **b:** Must be: parallelogram. Could be: rhombus, rectangle, and square.

7.3.3:

- **7-119. a:** (8,8) **b:** (6.5,6) **c:** (1,8.5) **d:** (2,4)
- **7-120. a:** *X* and *Y* **b:** *Y* and *Z*
- 7-121. a: Must be: none. Could be: right trapezoid, rectangle, square.b: Must be: none. Could be: Kite, rhombus, square.
- **7-122. a:** $360^\circ \div 18^\circ = 20$ sides
 - **b:** It can measure 90° (which forms a square). It cannot be 180° (because this polygon would only have 2 sides) or 13° (because 13 does not divide evenly into 360°).
- **7-123.** It must be a 30°- 60°- 90° triangle because it is a right triangle and the hypotenuse is twice the length of a leg.