Chapter 4

4.1.1:

4-6. a: $x = 11^{\circ}$ b: $x = 45^{\circ}$ c: $x = 30^{\circ}$ d: $x = 68^{\circ}$

4-7. a:

- **b:** Yes, because the triangles are similar (AA \sim) and the ratio of the corresponding side lengths is 1 (because AC = DF).
- **4-8. a:** Yes, she used the Pythagorean Theorem. **b:** $(x+1)^2 = x^2 + 2x + 1$ **c:** x = 24 **d:** 56 units

4-9.
$$x = 9, y = 4, z = 6\frac{2}{3}$$

4-10. Yes they are parallel because they have the same slope: $-\frac{3}{5}$.

4.1.2:

4-16. a: $\theta = 11^{\circ}, \frac{x}{95} \approx \frac{1}{5}, x \approx 18.46$ b: $a = b = 45^{\circ}$ c: $\frac{y}{70} \approx \frac{5}{2}, y \approx 175$

4-17. a: side ratio = 4:1 **b:** perimeter ratio is 4:1 **c:** 28

4-18. a: yes, AA ~ b: no, side ratios not equal $\frac{12}{64} \neq \frac{18}{98}$ c: cannot tell, not enough angle values given

4-19. $y = \frac{1}{3}x + 9$

4-20. Since the slope ratio for $11^{\circ} \approx 0.2$, $AB \approx 50$ units. The slope ratio for $68^{\circ} \approx 2.5$, so $BC \approx 4$ units. Thus, AB is actually longer.

4.1.3:

- **4-25.** They both could be. It depends on which angle is used as the slope angle.
- 4-26. a: Yes, since the slope ratio is greater than 1, the angle must be greater than 45°.
 b: Isiah is correct. Since the angle is less than 45°, the slope ratio must be less than 1.
 - c: Since the angle is greater than 45° , *x* must be less than 9.
- **4-27. b:** ratio for $11^{\circ} \approx \frac{1}{5}$, so $\frac{170}{x} \approx \frac{1}{5}$, and $x \approx 850$ feet.
- 4-28. Answers vary, possible solution: square, equilateral triangle, and equilateral hexagon.
- **4-29.** $m \measuredangle ABC = 22^\circ$, $m \measuredangle BAC = 68^\circ$, sum = 90°; complementary

4.1.4:

- **4-36.** a: t = 780.178 b: $p \approx 3.215$ c: $b \approx 148.505$
- **4-37.** a: 24 b: $2x + 20^{\circ} + 3x + 20^{\circ} + x + 2x = 360^{\circ}$, $x = 40^{\circ}$ c: $\frac{5}{12} = \frac{3}{x}$, $x = \frac{36}{5} = 7.2$
- **4-38.** They are congruent. They are similar (SSS \sim) and the ratio is 1.
- **4-39. a:** It implies that because Brian is always late on Tuesday, then today must be Tuesday.
 - **b:** The "Brian is always late on Tuesdays" and "Today is Tuesday" ovals should be next to each other, both with arrows pointing to "Brian will be late today."
- **4-40.** Her father's eyes were ≈ 69.126 inches high.

4.1.5:

- **4-43.** a: either 3 or $\frac{1}{3}$ b: either 9 or $\frac{1}{9}$
- **4-44.** a: $3x + 3^{\circ} + x + 7^{\circ} = 90^{\circ}, x = 20^{\circ}$ b: $9x + 4^{\circ} = 3x + 14^{\circ}, x = \frac{10}{6} \approx 1.67^{\circ}$
- **4-45.** tuna & ice cream, or tuna & cookies; turkey & brownies, turkey & ice cream, or turkey & cookies; lasagna & brownies, lasagna & ice cream, or lasagna & cookies.
- **4-46.** ≈ 29.44 feet
- **4-47.** $10^2 + (x+3)^2 = 26^2$, x = 21

4.2.1:

4-54.	a:	12 boys	b: 22 girls	c:	$\frac{2}{3}$	d:	7 boys left, 23 students, so $\frac{7}{23}$
4-55.	It assumes that everyone who likes bananas is a monkey.						
4-56.	a: $x = 13$, Pythagorean Theorem b: $x = 80^{\circ}$, alternate interior angles and the Triangle Angle Sum Conjecture						
4-57.	≈ 1469.27 feet						
4-58.	 a: 10 combinations: (a, b, c), (a, b, d), (a, b, e), (a, c, d), (a, c, e), (a, d, e), (b, c, d), (b, c, e), (b, d, e), (c, d, e) b: For every 2 songs that are played, there are automatically 3 songs that are not. Therefore, this problem just switched the list of played and unplayed songs. 						
4.2.2	•						

- **4-63.** 6 < *x* < 14
- **4-64.** 24 possible ways: ABCD, ABDC, ACBD, ACDB, ADBC, ADCB, BACD, BADC, BCAD, BCDA, BDAC, BDCA, CABD, CADB, CBAD, CBDA, CDAB, CDBA, DABC, DACB, DBAC, DBCA, DCAB, DCBA
- 4-65. a: yes, ΔABD ~ ΔEBC by AA~
 b: yes. Since DB = 9 units (by the Pythagorean Thm), the common ratio is 1.
- **4-66.** LE = MS and LI = ES = MI
- **4-67.** $AB \approx 11.47$ un., $A \approx 97.47$ square units

4.2.3:

- 4-72. a: $slope = \frac{1}{2}$ b: It must be parallel to or coincide with the line on the graph.
- **4-73.** 12 seconds
- **4-74.** No. Triangle Inequality property prevents this because 7 + 10 < 20 and 20 10 > 7.
- **4-75.** a: x = 49 b: x = 2 c: $x = \frac{16}{3}$ d: x = -5 or 1
- 4-76. leg ≈ 29.44 units, hypotenuse ≈ 30.78 units, so the perimeter ≈ 69.22 units

4.2.4:

4-82. a: 20 **b:** $\frac{8}{20} = \frac{2}{5}$

4-83. Yes, they are similar due to AA ~ because $m \measuredangle B = m \measuredangle E$ and $m \measuredangle C = m \measuredangle C$ (triangles share an angle).

- **4-84.** $\frac{1}{6}$, If the die is "fair," each roll of the die is an independent event.
- **4-85.** Methods vary: $\theta = 68^{\circ}$ (could be found using corresponding and supplementary angles), $\alpha = 85^{\circ}$ (could be found using corresponding angles since lines are parallel.
- **4-86.** $x \approx 10.39, y = 12$

4.2.5:

- **4-91.** a: less than 45° b: equal to 45° c: more than 45°
- **4-92.** $\sqrt{6^2 3^2} = \sqrt{27}, \sqrt{9^2 3^2} = \sqrt{72}$. So perimeter is $\sqrt{27} + \sqrt{72} + 15 = 28.68$ units. The area is $(\sqrt{27} + \sqrt{72})(3) + 2 = 20.52$ sq. units.

4-93. 540°

- **4-94.** The slope is $-\frac{7}{10}$. Points will vary. A few possible solutions: (5,79), (15,72), (25,65), etc.
- **4-95.** a: A'(-3,-3), B'(9,-3), C'(-3,-6) c: (9,3) b: A''(-3,3), B''(-3,-9), C''(-6,3)