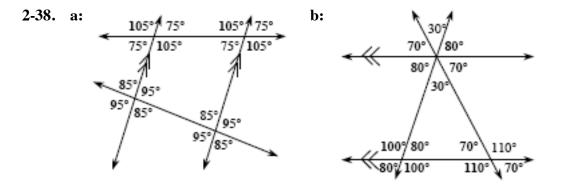

Chapter 2

2.1.1:

2-12. Answers vary. The left circle could be "equilateral", and the right could be "quadrilateral". Assuming this, you could add an equilateral hexagon to the left, a rhombus to the intersection, and a rectangle to the right circle.


2.1.2:

- **2-18.** a: Vertical angles, congruent, $3x + 5^\circ = 5x 57^\circ$, $x = 31^\circ$ b: Straight angle pair, supplementary, $2x + 4x + 150^\circ = 180^\circ$, $x = 5^\circ$
- **2-19.** a: $m \measuredangle B = m \measuredangle C$ because the line of symmetry must pass through A (according to the marked sides of equal length) and these angles are on opposite sides of the line of symmetry.
 - **b:** Since they are equal, $m \measuredangle B = \frac{1}{2}(124^\circ) = 62^\circ$.
- **2-20.** a: square b: (-4,5), (1,5), (-4,0), (1,0)
- **2-21.** y = x 1; No, because $1 \neq 3 1$
- **2-22.** a: Vertical; they are equal. b: They form a "Z."

2.1.3:

2-29.	a:	(-2,3) b: $(-2,3)$, yes			
2-30.		20 square units 2,600 square units; subtract the x and y -coordinates to find the length of the two sides.			
2-31.		We do not know the angles are equal, because we do not know if $\overrightarrow{BD} \ \overrightarrow{EG}$. The diagram does not have parallel line marks.			
2-32.		x = 17.5 (corresponding angles) x = 5 (multiple relationships can be used)			
2-33.	a:	an isosceles triangle b: a rectangle			

2.1.4:

2-39. The slopes are $\frac{2}{3}$ and $-\frac{3}{2}$. Since the slopes are opposite reciprocals, the lines must be perpendicular.

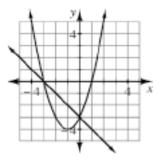
2-40. (3,-1), (7,-1)

- **2-41.** They used different units.
- **2-42.** The lines are parallel, so they do not intersect. Therefore, there is no solution.

2.1.5:

2-51.	<i>x</i> =	= 7°						
2-52.	a:	x = 10 units	b: $x = 6$	c: $x = 20^{\circ}$	d: $x = 10^{\circ}$			
2-53.	a:	x = 4 and $y = 18$		b: $x = -13$ and $y = 6$				
2-54.	a: Should be triangle with horiz. base of length 4 and vertical base of length 3 b: $-\frac{4}{3}$ c: Any equation of the form $y = -\frac{3}{4}x + b$							
2-55.	2							
2.2.1	2.2.1:							
2-61.	They are all isosceles triangles.							
2-62.	Reasoning will vary. $a = 118^{\circ}$, $b = 118^{\circ}$, $c = 32^{\circ}$, $d = 32^{\circ}$							
2-63.	a: 15° b: $x = 12^{\circ}$, $m \measuredangle D = 4(12^{\circ}) + 2^{\circ} = 50^{\circ}$ c: It is equilateral.							
2-64.	A'(-6,-3), $B'(-2,-1)$, and $C'(-5,-7)$							
2-65.	a: $y = -\frac{2}{3}x + 3$ b: Yes, because the slopes are opposite reciprocals.							
	c:	c: $y = \frac{1}{2}x + 5$ d: Any equation of the form $y = -2x + b$ for all real <i>b</i> values.						
2.2.2:								
2-70.		$8x^2 - 26x - 7$ $4x^2 - 47x + 33$		b: $10x^2 + 31x - 14$ d: $-6x^2 + 17x - 5$				
2-71.	are	a = 28 square units	5					

- **2-72. a:** $x = 8^{\circ}$, right angle is 90° **b:** $x = 20^{\circ}$, straight angle is 180° **c:** $x = 20^{\circ}$, sum of angles in a triangle is 180° **d:** $x = 60^{\circ}$, sum of angles in a triangle is 180°
- **2-73.** Daniel is correct because the definition of a rectangle is a quadrilateral with four right angles. Since a square has four sides and four right angles, it must be a rectangle.
- **2-74.** a: $\frac{4}{52} = \frac{1}{13}$ b: $\frac{13}{52} = \frac{1}{4}$ c: $\frac{1}{52}$ d: $\frac{39}{52} = \frac{3}{4}$


2.2.3:

- **2-81.** a: $y = -\frac{6}{5}x + 4$ b: $y = \frac{1}{2}x 2$
- **2-82.** The unshaded triangle is half the area of the rectangle (.5(8)(17) = 68 sq. in.), so the shaded area is the other half.
- **2-83.** a: Because when you are not standing up straight, you have changed your height, and you will not get a true measure of your height.
 b: Diagram (1) is correct.
- 2-84. a: If it rains, then Mr. Spelling is unhappy.
 b: If you add two even numbers together, then the result is even.
 c: If it is Tuesday, then Marla has a piano lesson.

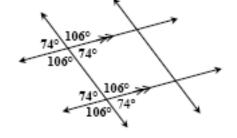
2.2.4:

2-90.	a:	$7^2 = 49 \text{ sq. cm}$	b:	0.5(10)(4) = 20 sq. in.
	c:	0.5(16+8)(6) = 72 sq. ft.		

- **2-91.** a: $15x^2 + 21x$ c: $3x^2 - x - 10$ b: $x^2 + 5x + 6$ d: $10x^2 - 3x - 4$
- **2-92.** See graph; (-3, 0) and (0, -3)

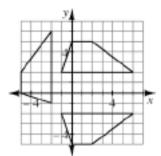
- **2-93. a:** Isosceles Trapezoid because two sides are parallel and the other two sides are the same length.
 - **b:** A'(7,-2), B'(8,-4), C'(2,-4), D'(3,-2)
 - **c:** 10 square units
- **2-94.** a: $\frac{12}{52} = \frac{3}{13}$ b: $\frac{20}{52} = \frac{5}{13}$ c: $\frac{2}{52} = \frac{1}{26}$ d: 0

2.3.1:


- **2-100.** a: $\sqrt{68} \approx 8.2$, since $\sqrt{64} = 8$, then $\sqrt{68}$ must be a little higher. b: (1) 2.2, (2) 9.2, (3) 7.1, (4) 4.7
- 2-101. 17 units
- **2-102.** a: 6x + 6 b: 6x + 6 = 78, so x = 12 and the rectangle is 15 cm by 24 cm. c: $(2 \cdot 12)(12 + 3) = 360$
- 2-103. a: If a polygon is a parallelogram, then its area equals its base times its height.
 b: "If a polygon is a triangle, then its area equals one half its base times its height." Arrow diagram: Polygon is a triangle → area of the polygon equals one-half base times height.
- 2-104. No, it would take 10 months for Sarita to catch up to Berti.

2.3.2:

2-109. 10 units


2-110. $y = \frac{6}{5}x - 3$ **b:** $y = -\frac{1}{4}x + 4.5$ **c:** $y = \frac{1}{3}x$ **d:** y = 2

2-111.

2-112. a: 1 b: $\frac{3}{8}$ c: $\frac{5}{8}$

2-113. a: It is a trapezoid because it has two parallel sides. b: A'(-2,-1), B'(-5,0), C'(-5,2), D'(-2,6)c: A'''(1,2), B'''(-2,5)d: $\frac{1}{2}(3)(2+7) = 13.5$ units

2.3.3:

- **2-118. a:** (1) (5,3); (2) (2,-6)
 - **b:** $p: y = 2x + 8; q: y = -\frac{1}{2}x + 3$
 - **c:** The solution should be (-2,4).

2-119. a: right triangle; slopes are opposite reciprocals

- **b:** 20 square units
- c: ≈ 23.4 units
- **2-120.** height = 12 units, area = $\frac{1}{2}(12)(12+23) = 210$ square units
- **2-121. a:** $x = 28.5^{\circ}$, Triangle Angle Sum Theorem
 - **b:** $x = 23^{\circ}$, relationships used varies
 - c: $x = 68^{\circ}$, corresponding angles are equal because the lines are parallel and base angles of an isosceles triangle are equal.

2-122. 5° and 21°